Multimodal Optimization by Covariance Matrix Self-Adaptation Evolution Strategy with Repelling Subpopulations
نویسندگان
چکیده
During the recent decades, many niching methods have been proposed and empirically verified on some available test problems. They often rely on some particular assumptions associated with the distribution, shape, and size of the basins, which can seldom be made in practical optimization problems. This study utilizes several existing concepts and techniques, such as taboo points, normalized Mahalanobis distance, and the Ursem's hill-valley function in order to develop a new tool for multimodal optimization, which does not make any of these assumptions. In the proposed method, several subpopulations explore the search space in parallel. Offspring of a subpopulation are forced to maintain a sufficient distance to the center of fitter subpopulations and the previously identified basins, which are marked as taboo points. The taboo points repel the subpopulation to prevent convergence to the same basin. A strategy to update the repelling power of the taboo points is proposed to address the challenge of basins of dissimilar size. The local shape of a basin is also approximated by the distribution of the subpopulation members converging to that basin. The proposed niching strategy is incorporated into the covariance matrix self-adaptation evolution strategy (CMSA-ES), a potent global optimization method. The resultant method, called the covariance matrix self-adaptation with repelling subpopulations (RS-CMSA), is assessed and compared to several state-of-the-art niching methods on a standard test suite for multimodal optimization. An organized procedure for parameter setting is followed which assumes a rough estimation of the desired/expected number of minima available. Performance sensitivity to the accuracy of this estimation is also studied by introducing the concept of robust mean peak ratio. Based on the numerical results using the available and the introduced performance measures, RS-CMSA emerges as the most successful method when robustness and efficiency are considered at the same time.
منابع مشابه
Task Scheduling Algorithm Using Covariance Matrix Adaptation Evolution Strategy (CMA-ES) in Cloud Computing
The cloud computing is considered as a computational model which provides the uses requests with resources upon any demand and needs.The need for planning the scheduling of the user's jobs has emerged as an important challenge in the field of cloud computing. It is mainly due to several reasons, including ever-increasing advancements of information technology and an increase of applications and...
متن کاملTHE CMA EVOLUTION STRATEGY BASED SIZE OPTIMIZATION OF TRUSS STRUCTURES
Evolution Strategies (ES) are a class of Evolutionary Algorithms based on Gaussian mutation and deterministic selection. Gaussian mutation captures pair-wise dependencies between the variables through a covariance matrix. Covariance Matrix Adaptation (CMA) is a method to update this covariance matrix. In this paper, the CMA-ES, which has found many applications in solving continuous optimizatio...
متن کاملCovariance Matrix Self-Adaptation and Kernel Regression - Perspectives of Evolutionary Optimization in Kernel Machines
Kernel based techniques have shown outstanding success in data mining and machine learning in the recent past. Many optimization problems of kernel based methods suffer from multiple local optima. Evolution strategies have grown to successful methods in non-convex optimization. This work shows how both areas can profit from each other. We investigate the application of evolution strategies to N...
متن کاملCMA-ES with Two-Point Step-Size Adaptation
We combine a refined version of two-point step-size adaptation with the covariance matrix adaptation evolution strategy (CMA-ES). Additionally, we suggest polished formulae for the learning rate of the covariance matrix and the recombination weights. In contrast to cumulative step-size adaptation or to the 1/5-th success rule, the refined two-point adaptation (TPA) does not rely on any internal...
متن کاملCovariance Matrix Adaptation Revisited - The CMSA Evolution Strategy -
The covariance matrix adaptation evolution strategy (CMA-ES) rates among the most successful evolutionary algorithms for continuous parameter optimization. Nevertheless, it is plagued with some drawbacks like the complexity of the adaptation process and the reliance on a number of sophisticatedly constructed strategy parameter formulae for which no or little theoretical substantiation is availa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Evolutionary computation
دوره 25 3 شماره
صفحات -
تاریخ انتشار 2017